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RESUMEN 

La evaluación de un nuevo test diagnóstico binario requiere conocer el verdadero estado de la enfermedad de todos lo pacientes en 

la muestra mediante la aplicación de un gold estándar. En la práctica clínica con frecuencia no se dispone de un gold estándar y es 

necesario utilizar un test de referencia para evaluar el nuevo test diagnóstico. Asimismo, con frecuencia el test de referencia no se 

aplica a todos los pacientes de la muestra. En este artículo se propone un algoritmo basado en el algoritmo EM para imputar los 

estimadores máximo verosímiles de la sensibilidad y especificidad de un nuevo test diagnóstico binario con respecto a un test de 

referencia con exactitud conocida cuando no todos los pacientes son verificados con el test de referencia. Se aplica el algoritmo 

SEM para estimar los errores estándares de los estimadores. Los resultados se han aplicado al diagnóstico del VIH.  

 

PALABRAS CLAVE: Algoritmos EM y SEM, Test de Referencia, Sensibilidad, Especificidad. 

 

ABSTRACT 

The assessment of a new binary diagnostic test has traditionally required knowledge of the disease status in all of the patients in the 

sample via the application of a gold standard. In clinical practice, there is often no gold standard to diagnose the disease and it is 

necessary to use a reference test to evaluate a new diagnostic test. Furthermore, the reference test is often not applied to all of the 

patients in the sample. In this article, an algorithm is proposed based on the EM algorithm to impute the maximum likelihood 

estimators of sensitivity and specificity of a new binary diagnostic test in relation to a reference test with known accuracy when not 

all of the patients are verified with the reference test. The SEM algorithm is applied in order to estimate the standard errors of the 

estimators. The results have been applied to the diagnosis of HIV. 

 

KEY WORDS: EM and SEM Algorithms, Reference Test, Sensitivity, Specificity. 

 

1. INTRODUCTION 

 

A diagnostic method is a test which is applied to a patient in order to obtain a provisional diagnosis of 
the presence or absence of a given disease. When the result of a diagnostic test is binary, the accuracy of the test 

is measured in terms of its sensitivity and specificity. Sensitivity is the probability of a diseased patient giving a 

positive test result and specificity is the probability of a non-diseased patient giving a negative test result. 

Traditionally, the evaluation of a new binary diagnostic test requires knowledge of the real state of the disease 

(whether present or absent) in each patient through the application of a gold standard. In practice, the gold standard 

is not always applied to all of the subjects in the sample, which leads to the so-called problem of partial verification 

of the disease [1, 2]. 

 

In some clinical situations, there is not always a gold standard to evaluate the disease status of a patient 

and, therefore, it is not possible to estimate the sensitivity and specificity of the new test through the classic 

method. In these situations, a reference test is used to evaluate the accuracy of the new diagnostic test which is 
to be studied. Several authors have studied the estimation of the accuracy of a diagnostic test in relation to a 

reference test by supposing that the two tests are conditionally independent on the disease [3, 4, 5]. The 

assumption of conditional independence between the two diagnostic tests does not seem reasonable in many 

applications [6, 7]. Others authors [8, 9, 10, 11] have studied the evaluation of a diagnostic test in relation to a 

reference test when the two diagnostic tests are conditionally dependent on the disease. 

 

Moreover, if the reference test is costly or risky for the patient, it is not applied to all of the patients in 

the sample, causing a problem quite similar to that of partial disease verification. 

 

The objective of this study is to estimate the sensitivity and the specificity of a new binary diagnostic 

test in relation to a reference test with known sensitivity and specificity when this test is not applied is not 

applied to all of the patients in the sample. In Section 2, an algorithm is proposed based on the EM algorithm in 
order to impute the values of the maximum likelihood estimators of sensitivity and specificity of a new 

diagnostic test. In Section 3, the values of the standard errors of the estimators obtained in Section 2 are imputed 

through the application of the SEM algorithm [12]. In Section 4, simulation experiments are carried out in order 
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to study the asymptotic coverage of the confidence intervals of sensitivity and specificity. In Section 5, the 

results obtained are applied to an example, and in Section 6 we discuss our findings. 

 

2. MAXIMUM LIKELIHOOD ESTIMATORS 

 

Let binary diagnostic test 1 be the new test and let diagnostic test 2 be the reference test. The random 
variable T models the result of test 1, such that 1T  when it is positive, indicating the presence of the disease,  

and 0T  when it is negative, indicating the absence of the disease; in a similar way, the random variable R 

models the result of the reference test, 1R  when it is positive and 0R  when it is negative; the variable V 

models the process of verification, 1V  when the patient is verified though the reference test and 0V  when 

the patient is not verified; and, lastly, the variable D models the true disease status in each patient, such that 

1D  when the patient is diseased and 0D  when the patient is non-diseased. 

 

If the diagnostic test is applied to all of the subjects in a random sample of n  size and the reference test 

is only applied to a part of the sample, Table 1 is obtained. Let  and 

 be the sensitivity and the specificity of the new test,  and 

 the sensitivity and the specificity of the reference test (we assume that 
20 1  and 

20 1), 1p P D  the disease prevalence and  

 
 
 

 

the probability of  selecting a subject with the results T i , R j  and D k  to apply the reference test to him 

or her. 

 

 1T  0T  

1V    

1R  11s  
10s  

0R  01s  
00s  

0V  1u  
0u  

Total 1n  
0n  

Table 1. Cross-classification of test results. 

 
In general, it can be assumed that the two diagnostic tests are conditionally dependent on the disease 

[6], that is to say 

  (1) 

 

where 1ij  when i j  and 1ij  when i j , and 
k

 represents the conditional dependence between the 

two diagnostic tests : 
1
 is the covariance when 1D  and 

0
 is the covariance when 0D . It is 

verified [6] that  when 
2 1

 and  when 
1 2

, when  is the sensitivity 

or the specificity. If 
1 0 0 , expression (1) is equivalent to supposing that the two diagnostic tests are 

conditionally independent on the disease. 

 

If the missing data mechanism is ignorable, which implies that the verification process is missing at 

random (MAR), it holds that 

  (2) 

 

i.e. the verification process with the reference test only depends on the result of the new test and not on the 

reference test nor on the disease status. Under assumption MAR this problem of estimation can be solved. Under 

assumption (2), the data from Table 1 are obtained from a multinomial distribution with the probabilities given 

in Table 2 when  

 

                                              (3) 
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 1T  0T  

1V    

1R  

1 2 0 1

1 2 1 1

1 1 1p

p

 

1 2 0 0

1 2 1 0

1 1

1

p

p

 

0R  

1 2 0 1

1 2 0 1

1 1

1

p

p

 

1 2 0 0

1 2 1 0

1

1 1

p

p

 

0V  1 1 11 1 1p p  
1 1 01 1 1p p  

Table 2. Probabilities of the multinomial distribution. 

 

The logarithm of likelihood function of the data in Table 1 is 

 

 
  (4) 

If the sensitivity and the specificity of the reference test   and the covariances 
0

 and 
1

 are known, 

the maximum likelihood estimators (MLEs) of the sensitivity and the specificity of the new test, of the disease 

prevalence and of 
1
 and 

0
 are obtained maximizing function (4). Thus, the MLEs of 

1
 and 

0
 are 

 

 11 01 10 00

1 0

1 0

ˆ ˆ  and  
s s s s

n n
. (5) 

If the parameters 
2

, 
2

, 
0

 and 
1
 are known, the values of the MLEs of 

1
, 

1
 and p  are obtained 

numerically solving a system of grade 5 nonlinear equations which does not depend on parameters 
1
 and 

0
, 

or by using the EM algorithm. 

 

2.1. EM Algorithm 

 

The EM algorithm [13] is a technique which permits the determination of the MLEs of parametric 
models when not all of the data is observed. The EM algorithm involves two stages: Step E and Step M. If there 

is a model for all of the data of Y  with a density function  is a vector of unknown 

parameters, the complete information Y  can be written as , where 
obsY  represents the observed 

part of Y  and 
misY  is the missing part. The EM algorithm imputes the value of , ˆ , which maximizes 

, that is to say, the MLE of  based on the observed data 
obsY . The algorithm starts from an initial 

value (0), if (t) is the estimator of  in the t-th iteration, the iteration (t+1) of the EM algorithm is as follows: 

 

Step E. To obtain the expectation of the logarithm of the likelihood function of the complete data if  is (t): 
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  . (6) 

 

Step M. To determine (t+1): maximizing the expectation of the logarithm of the likelihood function: 
 

. (7) 

 

The EM algorithm implicitly defines an application M( )such that  
 

  (8) 

If  converges to  and M( )  is continuous, then  verifies that 

 . (9) 

Developing  in Taylor series around  it holds that  

 , (10) 

when 

  (11) 

is the Jacobian matrix of M( )=(M1( ),…,Md( )) evaluated in . This matrix DM has a special relevance in 

the imputation of the asymptotic variance-covariance matrix of the MLE of 

. 

 

2.2. Application of the EM Algorithm 

 

In the situation which is analyzed here, the missing information is the disease status of each patient (D). 

This information is reconstructed in Step E of the algorithm and in Step M the MLEs are imputed from the data 

reconstructed in the previous step. The following proposition describes the EM algorithm. 

 

Proposition 1. If 
2

, 
2

, 
1
 and 

0
 are known, let  be current values of parameter 

1
, 

1
 and p after t iterations in the EM algorithm. The next iteration estimates are given by 

 

and  

 , (12) 

where 

 

 

 

 
and 

 

 
 

We iterate this process until the estimates converge. The convergent values 
1̂

, 
1̂

 and p̂  are the 

MLEs for 
1

, 
1
 and p. For a proof, see Appendix A. 

 

2.3. A new algorithm 

 

The application of the algorithm described in the Section 2.2 requires knowledge of the sensitivity and 

the specificity of the reference test ( 2 and v2) and the covariances
0

 and 
1

. If the accuracy of the reference 
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test is known but not the covariances, the proposed EM algorithm cannot be applied. However, the covariances 

are limited [6], , where  is the sensitivity 

or the specificity, and therefore this information can be used to approximate the values of the covariances. In 

order to solve this problem, we propose the following algorithm based on the EM algorithm: 

 

Step 0: . 

Repeat Steps 1 and 2 until the EM algorithm converges. 

Step 1: Apply an iteration of the EM algorithm and obtain and . 

Step 2: Calculate  or  

and  or . 

 

Therefore, this algorithm is based on the approximation of each 
k

 covariance to the average point of 

the interval (0, i(1- j)    and the application of the EM algorithm. The convergence of the algorithm is given by 
the convergence of the EM algorithm. The initial values of sensitivity, specificity and prevalence can be any 

values between 0 and 1, and the method always converges to the same solution as has been observed in the 

simulation experiments described in Section 5. Likewise, we have verified that in order that the method 

converges, it is necessary that Youden's index [14] of the reference test is bigger than zero ( 2+v2-1>0). With 

respect to the stop criteria, it is recommended to use the very small values, for example 2010  or 2410 . Higher 

values do not affect the solutions, although they can affect the estimation of the variance and covariance matrix. 

With respect to accuracy of reference test, we assume that 
20 1 and 

20 1, else the function (23) 

cannot be evaluated. If 
2 1 and 

2 1, then the reference test is a gold standard, and this problem is the 

verification bias problem [1, 2]. 

 

After obtaining the values of the MLEs of sensitivity and specificity of the diagnostic tests under 

evaluation and of the disease prevalence, it is necessary to obtain the corresponding standard errors. 

 

3. VARIANCE-COVARIANCE MATRIX 

 

The estimation of the asymptotic variance-covariance matrix of 
1̂

, 
1̂

 and p̂  can be obtained through 

the application of the SEM algorithm (Supplemented EM) [12]. 

 

3.1. Missing Information Principle and SEM Algorithm 

 

The Missing Information Principle establishes that the information observed is equal to the complete 

information minus the missing information, which in terms of Fisher information functions is expressed as  

 

(13) 

when  

 , (14) 

where 
misY  is the missing information, 

obsY  the observed information,  el parameter vector and ˆ  the MLE. 

Equation (13) can be rewritten as 

 

    (15) 

 

Dempster et al [13] demonstrated that  

 

 
1

mis ocI I DM , (16) 

 

when DM is the defined matrix in (11). Substituting expression (16) for (15), the asymptotic covariance matrix, 

obtained as the inverse matrix of (15), is 
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.(17) 

 
The SEM algorithm developed by Meng and Rubin [12], is a numerical procedure based on the EM 

algorithm to approximate the variance-covariance matrix of the estimator ˆ  of a parameter vector . The SEM 

algorithm consists of three parts: (1) the evaluation of matrix 1

ocI , (2) the evaluation of matrix DM, and (3) the 

evaluation of matrix  (see Meng and Rubin [13]). The main characteristic of the SEM algorithm consists of 

the imputation of the elements (rij) of matrix DM . The process is as follows. 

 

Let  be a parameter vector,  its MLE obtained through the application of 

the EM algorithm or some other procedure and ijr  the (i,j) th element of the matrix DM . Let (t)(i) be defined as 

, that is to say, only the ith component in  is active in the sense that 

the rest of the components are fixed at their MLEs. By definition 

(18) 

 

As M(  )is implicitly defined by the results of the EM algorithm, all of the ijr  values can be calculated 

using the EM algorithm. The steps for computing  are: 

 

INPUT: ˆ  and . 

Step 1: Obtain  by executing the EM algorithm. 

Repeat Steps 2 and 3 for 1,...,i d . 

Step 2: Calculate (t)(i) and consider it to be the estimator of , execute an iteration of the EM 

algorithm to obtain .  
Step 3: Calculate the ratios 

 . (19) 

OUTPUT: y . 

 

The value of each ijr  is obtained when the sequence ,. is stabilized for some value of t . In 

this process, the value t  can be different for each ijr  element of the DM matrix. In practice, the stop criteria 

for the calculation of ijr  is that  should be smaller than the square root of the stop criteria used in 

the application of the EM algorithm. 

 

 

3.2. Application of the SEM Algorithm 

 

The application of the SEM algorithm requires firstly the evaluation of the matrix 
1

ocI . This matrix is 

the inverse matrix to the Fisher information matrix of the complete data and is calculated from the last table 

obtained in the application of the algorithm described in Section 2.3 (algorithm 2.3). The elements of this matrix 
are shown in Appendix B. 

 

Having obtained the matrix 
1

ocI  and the MLEs 
1̂

, 
1̂

 and p̂ , and taking as values of the covariances 

1
 and 

0
 the last values obtained by the algorithm 2.3, the second part of the SEM algorithm consists of the 

evaluation of the matrix DM. The elements ijr , , 1, 2,3i j , of the matrix DM are obtained by the iterative 

application of the following steps of the algorithm: 

 

INPUT:  and . 

Step 1: Calculate   applying the algorithm 2.3. 
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Step 2: Obtain . For each 

one of them, execute the first iteration of the algorithm 2.3 considering  to be the initial value of   and 

obtain the values . 

Step 3: Calculate the ratios 

 . (20) 

OUTPUT: and ,   , 1,2,3
t

ijr i j . 

 

Therefore, having imputed the MLEs of 
1

, 
1

 and p through the algorithm 2.3, the initial values of 

 are taken, the same ones, for example, as in the application of the algorithm 2.3, and an 

iteration of the algorithm 2.3 is executed obtaining . Next, the vectors  

 
are constructed, and for each one of them an iteration of the algorithm 2.3 is executed considering each  

as the initial value which is taken on applying this algorithm, obtaining 

. Next, the ratios are calculated: 

 

 

 
 

 
  (21) 

and the process is repeated until , when  is the value of the stop criteria of the algorithm 

2.3. Next, the asymptotic variance-covariance matrix of 
1̂

, 
1̂

 and p̂  is estimated applying equation (17). 

 

4. SIMULATION STUDY 

 

The analysis of the asymptotic coverage of the confidence intervals obtained through the application of 

the algorithm 2.3 and SEM algorithm has been carried out through a Monte Carlo study which consisted of the 

generation of 2000 random multinomial samples, with the probabilities given in Table 2, sized 1000, 2000, 
3000, 4000 and 5000. As values of sensitivity and specificity of two diagnostic tests we have taken 

 and , as they are 

values which appear quite frequently in clinical practice. In the first case, 
1 0.017  and 

0 0.0375 , and in 

the second case 
1 0.04  and 

0 0.07 . As values of disease prevalence we have taken 10%, 20%, 30%, 40% 

and 50%; and as values of verification probabilities we have taken  and 

, which in practice can be considered extreme verification probabilities for the sample 

sizes analysed. For each one of the samples generated, the algorithm 2.3 and the SEM algorithm have been 

applied, and for each 2000 samples of the same size generated from the same multinomial distribution the 
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percentage of the 95% confidence intervals  which contain the value of sensitivity and specificity 

respectively.  

 

In Tables 3 and 4, some of the results obtained for  

taking different values of 
1
 and 

0
. From these results, it is obtained that, in general terms, the coverage of the 

confidence intervals of sensitivity and specificity grow with an increase in the prevalence of the disease and/or 

with an increase in the probabilities verification. With respect to conditional dependence ( 1 , 0), this has no 
clear effect upon the coverage of the confidence intervals. In general terms, when the probabilities of 

verification are low, depending on the prevalence of the disease it is necessary to use samples of between 1000 
and 5000 patients so that the confidence intervals of sensitivity and specificity have a coverage of 95%. In 

general terms, a 10% increase in disease prevalence implies a decrease of 1000 patients in the size of the sample 

in order to obtain a coverage of 95%. When the probabilities of verification are high, with samples of between 

1000 and 2000 patients the confidence intervals of sensitivity and specificity have a coverage of 95%. Similar 

results have been obtained for . 

 

 

1 1 2 2 1 00.85  0.75  0.98  0.95  0.10  0.75  0.10p  

n 
1

0

0

0
 

1

0

0.004250

0.009375
 

1

0

0.00850

0.01875
 

1

0

0.012750

0.028125
 

1

0

0.0165

0.0370
 

1000 0.7205 0.8100 0.7570 0.6230 0.3655 

2000 0.8865 0.8440 0.8245 0.8570 0.8640 

3000 0.9225 0.9010 0.9030 0.9020 0.9155 

4000 0.9480 0.9135 0.9305 0.9355 0.9340 

5000 0.9480 0.9425 0.9470 0.9505 0.9425 

1 1 2 2 1 00.85  0.75  0.98  0.95  0.10  0.95  0.25p  

n 
1

0

0

0
 

1

0

0.004250

0.009375
 

1

0

0.00850

0.01875
 

1

0

0.012750

0.028125
 

1

0

0.0165

0.0370
 

1000 0.5375 0.8115 0.8840 0.6635 0.2810 

2000 0.9515 0.9485 0.9540 0.9485 0.9535 

3000 0.9695 0.9685 0.9685 0.9610 0.9645 

4000 0.9685 0.9575 0.9555 0.9610 0.9720 

5000 0.9625 0.9580 0.9610 0.9605 0.9525 

1 1 2 2 1 00.85  0.75  0.98  0.95  0.50  0.75  0.10p  

n 
1

0

0

0
 

1

0

0.004250

0.009375
 

1

0

0.00850

0.01875
 

1

0

0.012750

0.028125
 

1

0

0.0165

0.0370
 

1000 0.9505 0.9420 0.9400 0.9345 0.9500 

2000 0.9525 0.9440 0.9495 0.9415 0.9420 

3000 0.9505 0.9470 0.9585 0.9635 0.9590 

4000 0.9525 0.9540 0.9570 0.9540 0.9525 

5000 0.9500 0.9575 0.9580 0.9630 0.9565 

1 1 2 2 1 00.85  0.75  0.98  0.95  0.50  0.95  0.25p  

n 
1

0

0

0
 

1

0

0.004250

0.009375
 

1

0

0.00850

0.01875
 

1

0

0.012750

0.028125
 

1

0

0.0165

0.0370
 

1000 0.9570 0.9580 0.9375 0.9575 0.9525 

2000 0.9485 0.9540 0.9520 0.9550 0.9450 

3000 0.9580 0.9535 0.9500 0.9525 0.9550 

4000 0.9525 0.9550 0.9490 0.9550 0.9480 
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5000 0.9525 0.9530 0.9575 0.9575 0.9445 

Table 3. Coverage of the 95% confidence interval of sensitivity. 

 

 

1 1 2 2 1 00.85  0.75  0.98  0.95  0.10  0.75  0.10p  

n 
1

0

0

0
 

1

0

0.004250

0.009375
 

1

0

0.00850

0.01875
 

1

0

0.012750

0.028125
 

1

0

0.0165

0.0370
 

1000 0.7915 0.9390 0.9530 0.9765 0.9710 

2000 0.9665 0.9530 0.9470 0.9520 0.9505 

3000 0.9650 0.9515 0.9565 0.9570 0.9535 

4000 0.9625 0.9465 0.9480 0.9595 0.9545 

5000 0.9640 0.9530 0.9610 0.9645 0.9545 

1 1 2 2 1 00.85  0.75  0.98  0.95  0.10  0.95  0.25p  

n 
1

0

0

0
 

1

0

0.004250

0.009375
 

1

0

0.00850

0.01875
 

1

0

0.012750

0.028125
 

1

0

0.0165

0.0370
 

1000 0.7545 0.9450 0.9635 0.9670 0.9460 

2000 0.9565 0.9590 0.9555 0.9570 0.9595 

3000 0.9565 0.9555 0.9545 0.9580 0.9560 

4000 0.9635 0.9575 0.9600 0.9560 0.9540 

5000 0.9625 0.9545 0.9650 0.9510 0.9535 

1 1 2 2 1 00.85  0.75  0.98  0.95  0.50  0.75  0.10p  

n 
1

0

0

0
 

1

0

0.004250

0.009375
 

1

0

0.00850

0.01875
 

1

0

0.012750

0.028125
 

1

0

0.0165

0.0370
 

1000 0.9635 0.9485 0.9470 0.9430 0.9510 

2000 0.9540 0.9520 0.9540 0.9460 0.9460 

3000 0.9510 0.9445 0.9590 0.9560 0.9555 

4000 0.9605 0.9530 0.9545 0.9470 0.9525 

5000 0.9560 0.9545 0.9585 0.9570 0.9600 

1 1 2 2 1 00.85  0.75  0.98  0.95  0.50  0.95  0.25p  

n 
1

0

0

0
 

1

0

0.004250

0.009375
 

1

0

0.00850

0.01875
 

1

0

0.012750

0.028125
 

1

0

0.0165

0.0370
 

1000 0.9460 0.9480 0.9480 0.9545 0.9420 

2000 0.9605 0.9490 0.9420 0.9580 0.9465 

3000 0.9570 0.9525 0.9515 0.9560 0.9450 

4000 0.9590 0.9565 0.9495 0.9465 0.9420 

5000 0.9600 0.9460 0.9500 0.9585 0.9460 

Table 4. Coverage of the 95% confidence interval of specificity. 
 

5. APPLICATION 

 

The results of Sections 2 and 3 have been applied to the diagnosis of HIV using the ELISA test as a 

reference test. Sensitivity and specificity of the ELISA test are 0.98 and 0.93 approximately. The diagnosis of 

this disease can also be made through the p24 antigen test. The objective is to evaluate the p24 antigen test 

taking as a reference test the ELISA. In Table 5, the results shown are those obtained when applying the p24 

antigen test to a sample of 2150 individuals and the ELISA test to a part of this sample.  

 

Using the EM algorithm and taking (0,5, 0.5, 0.5) as initial values and 2410  as the value of the stop 

criteria, the estimated sensitivity and specificity of the p24 test are 
1̂ 71.13%  and 

1̂ 93.88%  respectively. 

Applying the SEM algorithm, standard errors of sensitivity and specificity are 
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1̂
ˆ 0.075  and 

1̂
ˆ 0.004 , and the respective 95% confidence intervals are 

(0.5635, 0.8591) and (0.9307, 0,9468).  

 

 1T  0T  

1V    

1R  203 11 

0R  46 163 

0V  13 1714 

Total 262 1888 

Table 5. Data on HIV. 

 

6. CONCLUDING REMARKS 

 
In this article, an algorithm is proposed to estimate the sensitivity and the specificity of a new binary 

diagnostic test in relation to a reference test with known accuracy when the reference test is not applied to all of 

the patients in the sample. The algorithm is based on the approximation of covariances between the two 

diagnostic tests and on the application of the EM algorithm. Moreover, the SEM algorithm developed by Meng 

and Rubin (1991) is applied to impute the standard errors of the estimators of sensitivity and specificity. 

Simulation experiments have been carried out in order to study the asymptotic coverage of the confidence 

intervals of the estimators obtained, analysing the effect upon them of verification probabilities, conditional 

dependence between the two diagnostic tests and the prevalence of the disease. In general terms, when the 

probabilities of verification are low, depending on the prevalence of the disease it is necessary to use samples of 

between 1000 and 5000 patients so that the confidence intervals of sensitivity and specificity have a coverage of 

95%. When the probabilities of verification are high, it is necessary to use samples of between 1000 and 2000 

patients so that the confidence intervals of sensitivity and specificity have a coverage of 95%. The high number 
of samples is undoubtedly due to the sources of missing information in the problem analysed. On the one hand, 

the disease status in each patient is unknown, and on the other hand the reference test is not applied to all of the 

subjects, which has a clear repercussion on the size of the samples. 
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Appendix A: EM algorithm 

 

If the true state of the disease in all patients is known, the logarithm of the likelihood function of the 

complete data is  

          

(22) 

when ijka  is the number of patients in whom , , 1,D i T j V R k , ijb  is the number of patients in 

whom (D=i, T=j, V=0), pijk=P(D=i, T=j, V=1,R=k) and qij=P(D=i, T=j, V=0). 

 

Let  be current values of parameter 
1

, 
1

 and p after t iterations in the EM 

algorithm. The E step of M gives the expected value of the complete-data log-likelihood conditional on the 
observed data and the current values of the parameters. From (22) we obtain the conditional expectation as 

 

                                                                                                                                            (23) 

 

where 

 

 

 

 
and 

 
. 

The conditioned probabilities are calculated using (1) and (2). The M step of EM gives new estimators  

 for 
1

, 
1
 and p by maximizing the conditional expectation . These 

new estimators have the explicit forms given in Proposition 1. 

 

Appendix B: Fisher information matrix 

 

The Fisher information matrix of the complete data, 
ocI , is the information matrix corresponding to the 

logarithm of likelihood function (22). This matrix is estimated through the Fisher information matrix 

corresponding to function (23), and this is a diagonal matrix whose elements are: 
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+

 

 

 

 
where each value   and   has been obtained in the last iteration of the method 2.2. On rare occasions, the 

matrix 1

ocI  can be badly conditioned and this usually happens when with small disease prevalence the sample is 

not big enough, and the column of subjects with a negative test from the table of diseased subjects obtained in 

the last iteration of the EM algorithm is equal to zero. The problem is solved by increasing the size of the sample 

or by increasing the level of verification for subjects with a negative test. 

 


